Finite Element Analyses of Double-wall Sandwich Structures with Viscoelastic Core

Rawad Assaf1 and Walid Larbi2

1PhD Student, Chaire de travaux publics et bâtiments, Conservatoire National des Arts et Métiers, 292 rue Saint-Martin, 75141 Paris Cedex 03, France, e-mail: rawad.assaf@isae.edu.lb

2Assistant Professor, Chaire de travaux publics et bâtiments, Conservatoire National des Arts et Métiers, 292 rue Saint-Martin, 75141 Paris Cedex 03, France, PH: 00331140272793, e-mail: walid.larbi@cnam.fr

ABSTRACT

This paper presents a reduced order finite element model for sound transmission analysis through a double-wall sandwich structures with viscoelastic core inserted in an infinite baffle. The proposed model is derived from a multi-field variational principle involving structural displacement and acoustic pressure inside the fluid cavity. To solve the vibro-acoustic problem, the plate displacements are expanded as a modal summation of the plate's eigenfunctions in vacuo. Similarly, the cavity pressure is expanded as a summation over the modes of the cavity with rigid boundaries. Then, an appropriate reduced-order model is introduced. The structure is excited by a plane wave at the source side. An example of the normal sound transmission loss of a double glazed window with laminated glass is shown. This example illustrates the accuracy and the versatility of the proposed reduced order model, especially in terms of prediction of sound transmission.